# 17 Deprecated

## 17.1 Conditions

**Q**: What does`options(error = recover)`

do? Why might you use it?**A**: In case of`options(error = recover)`

`utils::recover()`

will be called (without arguments) in case of an error. This will print out a list of calls which precede the error and lets the user choose to incorporate`browser()`

directly in any of the regarding environments allowing a practical mode for debugging.**Q**: What does`options(error = quote(dump.frames(to.file = TRUE)))`

do? Why might you use it?**A**: This option writes a dump of the evaluation environment where an error occurs into a file ending on`.rda`

. When this option is set, R will continue to run after the first error. To stop R at the first error use`quote({dump.frames(to.file=TRUE); q()})`

. These options are especially useful for debugging non-interactive R scripts afterwards (“post mortem debugging”).

## 17.2 Expressions (new)

**Q**:`base::alist()`

is useful for creating pairlists to be used for function arguments:`foo <- function() {} formals(foo) <- alist(x = , y = 1) foo #> function (x, y = 1) #> { #> }`

What makes

`alist()`

special compared to`list()`

?**A**: From`?alist`

:alist handles its arguments as if they described function arguments. So the values are not evaluated, and tagged arguments with no value are allowed whereas list simply ignores them. alist is most often used in conjunction with formals.

## 17.3 Functionals

### 17.3.1 My first functional: `lapply()`

**Q**: Why are the following two invocations of`lapply()`

equivalent?`trims <- c(0, 0.1, 0.2, 0.5) x <- rcauchy(100) lapply(trims, function(trim) mean(x, trim = trim)) lapply(trims, mean, x = x)`

**A**: In the first statement each element of`trims`

is explicitly supplied to`mean()`

’s second argument. In the latter statement this happens via positional matching, since`mean()`

’s first argument is supplied via name in`lapply()`

’s third argument (`...`

).**Q**: The function below scales a vector so it falls in the range [0, 1]. How would you apply it to every column of a data frame? How would you apply it to every numeric column in a data frame?`scale01 <- function(x) { rng <- range(x, na.rm = TRUE) (x - rng[1]) / (rng[2] - rng[1]) }`

**A**: Since this function needs numeric input, one can check this via an if clause. If one also wants to return non-numeric input columns, these can be supplied to the`else`

argument of the`if()`

“function”:`data.frame(lapply(iris, function(x) if (is.numeric(x)) scale01(x) else x))`

**Q**: Use both for loops and`lapply()`

to fit linear models to the`mtcars`

using the formulas stored in this list:`formulas <- list( mpg ~ disp, mpg ~ I(1 / disp), mpg ~ disp + wt, mpg ~ I(1 / disp) + wt )`

**A**: Like in the first exercise, we can create two`lapply()`

versions:`# lapply (2 versions) la1 <- lapply(formulas, lm, data = mtcars) la2 <- lapply(formulas, function(x) lm(formula = x, data = mtcars)) # for loop lf1 <- vector("list", length(formulas)) for (i in seq_along(formulas)){ lf1[[i]] <- lm(formulas[[i]], data = mtcars) }`

Note that all versions return the same content, but they won’t be identical, since the values of the “call” element will differ between each version.

**Q**: Fit the model`mpg ~ disp`

to each of the bootstrap replicates of`mtcars`

in the list below by using a for loop and`lapply()`

. Can you do it without an anonymous function?`bootstraps <- lapply(1:10, function(i) { rows <- sample(1:nrow(mtcars), rep = TRUE) mtcars[rows, ] })`

**A**:`# lapply without anonymous function la <- lapply(bootstraps, lm, formula = mpg ~ disp) # for loop lf <- vector("list", length(bootstraps)) for (i in seq_along(bootstraps)){ lf[[i]] <- lm(mpg ~ disp, data = bootstraps[[i]]) }`

**Q**: For each model in the previous two exercises, extract \(R^2\) using the function below.`rsq <- function(mod) summary(mod)$r.squared`

**A**: For the models in exercise 3:`sapply(la1, rsq) #> [1] 0.7183433 0.8596865 0.7809306 0.8838038 sapply(la2, rsq) #> [1] 0.7183433 0.8596865 0.7809306 0.8838038 sapply(lf1, rsq) #> [1] 0.7183433 0.8596865 0.7809306 0.8838038`

And the models in exercise 4:

`sapply(la, rsq) #> [1] 0.7613622 0.7300040 0.7096029 0.7971209 0.7709383 0.6967571 0.8371663 #> [8] 0.7189694 0.7286141 0.6194394 sapply(lf, rsq) #> [1] 0.7613622 0.7300040 0.7096029 0.7971209 0.7709383 0.6967571 0.8371663 #> [8] 0.7189694 0.7286141 0.6194394`

### 17.3.2 For loops functionals: friends of lapply():

**Q**: Use`vapply()`

to:Compute the standard deviation of every column in a numeric data frame.

Compute the standard deviation of every numeric column in a mixed data frame. (Hint: you’ll need to use

`vapply()`

twice.)

**A**: As a numeric`data.frame`

we choose`cars`

:`vapply(cars, sd, numeric(1))`

And as a mixed

`data.frame`

we choose`iris`

:`vapply(iris[vapply(iris, is.numeric, logical(1))], sd, numeric(1))`

**Q**: Why is using`sapply()`

to get the`class()`

of each element in a data frame dangerous?**A**: Columns of data.frames might have more than one class, so the class of`sapply()`

’s output may differ from time to time (silently). If …- all columns have one class:
`sapply()`

returns a character vector - one column has more classes than the others:
`sapply()`

returns a list - all columns have the same number of classes, which is more than one:
`sapply()`

returns a matrix

For example:

`a <- letters[1:3] class(a) <- c("class1", "class2") df <- data.frame(a = character(3)) df$a <- a df$b <- a class(sapply(df, class)) #> [1] "matrix"`

Note that this case often appears, wile working with the POSIXt types, POSIXct and POSIXlt.

- all columns have one class:
**Q**: The following code simulates the performance of a t-test for non-normal data. Use`sapply()`

and an anonymous function to extract the p-value from every trial.`trials <- replicate( 100, t.test(rpois(10, 10), rpois(7, 10)), simplify = FALSE )`

Extra challenge: get rid of the anonymous function by using

`[[`

directly.**A**:`# anonymous function: sapply(trials, function(x) x[["p.value"]]) # without anonymous function: sapply(trials, "[[", "p.value")`

**Q**: What does`replicate()`

do? What sort of for loop does it eliminate? Why do its arguments differ from`lapply()`

and friends?**A**: As stated in`?replicate`

:replicate is a wrapper for the common use of sapply for repeated evaluation of an expression (which will usually involve random number generation).

We can see this clearly in the source code:

`#> function (n, expr, simplify = "array") #> sapply(integer(n), eval.parent(substitute(function(...) expr)), #> simplify = simplify) #> <bytecode: 0x55fd08512b78> #> <environment: namespace:base>`

Like

`sapply()`

`replicate()`

eliminates a for loop. As explained for`Map()`

in the textbook, also every`replicate()`

could have been written via`lapply()`

. But using`replicate()`

is more concise, and more clearly indicates what you’re trying to do.**Q**: Implement a version of`lapply()`

that supplies`FUN`

with both the name and the value of each component.**A**:`lapply_nms <- function(X, FUN, ...){ Map(FUN, X, names(X), ...) } lapply_nms(iris, function(x, y) c(class(x), y)) #> $Sepal.Length #> [1] "numeric" "Sepal.Length" #> #> $Sepal.Width #> [1] "numeric" "Sepal.Width" #> #> $Petal.Length #> [1] "numeric" "Petal.Length" #> #> $Petal.Width #> [1] "numeric" "Petal.Width" #> #> $Species #> [1] "factor" "Species"`

**Q**: Implement a combination of`Map()`

and`vapply()`

to create an`lapply()`

variant that iterates in parallel over all of its inputs and stores its outputs in a vector (or a matrix). What arguments should the function take?**A**As we understand this exercise, it is about working with a list of lists, like in the following example:`testlist <- list(iris, mtcars, cars) lapply(testlist, function(x) vapply(x, mean, numeric(1))) #> Warning in mean.default(X[[i]], ...): argument is not numeric or logical: #> returning NA #> [[1]] #> Sepal.Length Sepal.Width Petal.Length Petal.Width Species #> 5.843333 3.057333 3.758000 1.199333 NA #> #> [[2]] #> mpg cyl disp hp drat wt #> 20.090625 6.187500 230.721875 146.687500 3.596563 3.217250 #> qsec vs am gear carb #> 17.848750 0.437500 0.406250 3.687500 2.812500 #> #> [[3]] #> speed dist #> 15.40 42.98`

So we can get the same result with a more specialized function:

`lmapply <- function(X, FUN, FUN.VALUE, simplify = FALSE){ out <- Map(function(x) vapply(x, FUN, FUN.VALUE), X) if(simplify == TRUE){return(simplify2array(out))} out } lmapply(testlist, mean, numeric(1)) #> Warning in mean.default(X[[i]], ...): argument is not numeric or logical: #> returning NA #> [[1]] #> Sepal.Length Sepal.Width Petal.Length Petal.Width Species #> 5.843333 3.057333 3.758000 1.199333 NA #> #> [[2]] #> mpg cyl disp hp drat wt #> 20.090625 6.187500 230.721875 146.687500 3.596563 3.217250 #> qsec vs am gear carb #> 17.848750 0.437500 0.406250 3.687500 2.812500 #> #> [[3]] #> speed dist #> 15.40 42.98`

**Q**: Implement`mcsapply()`

, a multi-core version of`sapply()`

. Can you implement`mcvapply()`

, a parallel version of`vapply()`

? Why or why not?

### 17.3.3 Manipulating matrices and data frames

**Q**: How does`apply()`

arrange the output? Read the documentation and perform some experiments.**A**:`apply()`

arranges its output columns (or list elements) according to the order of the margin. The rows are ordered by the other dimensions, starting with the “last” dimension of the input object. What this means should become clear by looking at the three and four dimensional cases of the following example:`# for two dimensional cases everything is sorted by the other dimension arr2 <- array(1:9, dim = c(3, 3), dimnames = list(paste0("row", 1:3), paste0("col", 1:3))) arr2 apply(arr2, 1, head, 1) # Margin is row apply(arr2, 1, head, 9) # sorts by col apply(arr2, 2, head, 1) # Margin is col apply(arr2, 2, head, 9) # sorts by row # 3 dimensional arr3 <- array(1:27, dim = c(3,3,3), dimnames = list(paste0("row", 1:3), paste0("col", 1:3), paste0("time", 1:3))) arr3 apply(arr3, 1, head, 1) # Margin is row apply(arr3, 1, head, 27) # sorts by time and col apply(arr3, 2, head, 1) # Margin is col apply(arr3, 2, head, 27) # sorts by time and row apply(arr3, 3, head, 1) # Margin is time apply(arr3, 3, head, 27) # sorts by col and row # 4 dimensional arr4 <- array(1:81, dim = c(3,3,3,3), dimnames = list(paste0("row", 1:3), paste0("col", 1:3), paste0("time", 1:3), paste0("var", 1:3))) arr4 apply(arr4, 1, head, 1) # Margin is row apply(arr4, 1, head, 81) # sorts by var, time, col apply(arr4, 2, head, 1) # Margin is col apply(arr4, 2, head, 81) # sorts by var, time, row apply(arr4, 3, head, 1) # Margin is time apply(arr4, 3, head, 81) # sorts by var, col, row apply(arr4, 4, head, 1) # Margin is var apply(arr4, 4, head, 81) # sorts by time, col, row`

**Q**: There’s no equivalent to`split()`

+`vapply()`

. Should there be? When would it be useful? Implement one yourself.**A**: We can modify the`tapply2()`

approach from the book, where`split()`

and`sapply()`

were combined:`v_tapply <- function(x, group, f, FUN.VALUE, ..., USE.NAMES = TRUE) { pieces <- split(x, group) vapply(pieces, f, FUN.VALUE, ..., USE.NAMES = TRUE) }`

`tapply()`

has a`SIMPLIFY`

argument. When you set it to`FALSE`

,`tapply()`

will always return a list. It is easy to create cases where the length and the types/classes of the list elements vary depending on the input. The`vapply()`

version could be useful, if you want to control the structure of the output to get an error according to some logic of a specific usecase or you want typestable output to build up other functions on top of it.**Q**: Implement a pure R version of`split()`

. (Hint: use`unique()`

and subsetting.) Can you do it without a for loop?**A**:`split2 <- function(x, f, drop = FALSE, ...){ # there are three relevant cases for f. f is a character, f is a factor and all # levels occur, f is a factor and some levels don't occur. # first we check if f is a factor fact <- is.factor(f) # if drop it set to TRUE, we drop the non occuring levels. # (If f is a character, this has no effect.) if(drop){f <- f[, drop = TRUE]} # now we want all unique elements/levels of f levs <- if (fact) {unique(levels(f))} else {as.character(unique(f))} # we use these levels to subset x and supply names for the resulting output. setNames(lapply(levs, function(lv) x[f == lv, , drop = FALSE]), levs) }`

**Q**: What other types of input and output are missing? Brainstorm before you look up some answers in the plyr paper.**A**: From the suggested plyr paper, we can extract a lot of possible combinations and list them up on a table. Sean C. Anderson already has done this based on a presentation from Hadley Wickham and provided the following result here.object type array data frame list nothing array `apply`

`.`

`.`

`.`

data frame `.`

`aggregate`

`by`

`.`

list `sapply`

`.`

`lapply`

`.`

n replicates `replicate`

`.`

`replicate`

`.`

function arguments `mapply`

`.`

`mapply`

`.`

Note the column nothing, which is specifically for usecases, where sideeffects like plotting or writing data are intended.

### 17.3.4 Manipulating lists

**Q**: Why isn’t`is.na()`

a predicate function? What base R function is closest to being a predicate version of`is.na()`

?**A**: Because a predicate function always returns`TRUE`

or`FALSE`

.`is.na(NULL)`

returns`logical(0)`

, which excludes it from being a predicate function. The closest in base that we are aware of is`anyNA()`

, if one applies it elementwise.**Q**: Use`Filter()`

and`vapply()`

to create a function that applies a summary statistic to every numeric column in a data frame.**A**:`vapply_num <- function(X, FUN, FUN.VALUE){ vapply(Filter(is.numeric, X), FUN, FUN.VALUE) }`

**Q**: What’s the relationship between`which()`

and`Position()`

? What’s the relationship between`where()`

and`Filter()`

?**A**:`which()`

returns all indices of true entries from a logical vector.`Position()`

returns just the first (default) or the last integer index of all true entries that occur by applying a predicate function on a vector. So the default relation is`Position(f, x) <=> min(which(f(x)))`

.`where()`

, defined in the book as:`where <- function(f, x) { vapply(x, f, logical(1)) }`

is useful to return a logical vector from a condition asked on elements of a list or a data frame.

`Filter(f, x)`

returns all elements of a list or a data frame, where the supplied predicate function returns`TRUE`

. So the relation is`Filter(f, x) <=> x[where(f, x)]`

.**Q**: Implement`Any()`

, a function that takes a list and a predicate function, and returns`TRUE`

if the predicate function returns`TRUE`

for any of the inputs. Implement`All()`

similarly.**A**:`Any()`

:`Any <- function(l, pred){ stopifnot(is.list(l)) for (i in seq_along(l)){ if (pred(l[[i]])) return(TRUE) } return(FALSE) }`

`All()`

:`All <- function(l, pred){ stopifnot(is.list(l)) for (i in seq_along(l)){ if (!pred(l[[i]])) return(FALSE) } return(TRUE) }`

**Q**: Implement the`span()`

function from Haskell: given a list`x`

and a predicate function`f`

,`span`

returns the location of the longest sequential run of elements where the predicate is true. (Hint: you might find`rle()`

helpful.)**A**: Our`span_r()`

function returns the first index of the longest sequential run of elements where the predicate is true. In case of more than one longest sequenital, more than one first_index is returned.`span_r <- function(l, pred){ # We test if l is a list stopifnot(is.list(l)) # we preallocate a logical vector and save the result # of the predicate function applied to each element of the list test <- vector("logical", length(l)) for (i in seq_along(l)){ test[i] <- (pred(l[[i]])) } # we return NA, if the output of pred is always FALSE if(!any(test)) return(NA_integer_) # Otherwise we look at the length encoding of TRUE and FALSE values. rle_test <- rle(test) # Since it might happen, that more than one maximum series of TRUE's appears, # we have to implement some logic, which might be easier, if we save the rle # output in a data.frmame rle_test <- data.frame(lengths = rle_test[["lengths"]], values = rle_test[["values"]], cumsum = cumsum(rle_test[["lengths"]])) rle_test[["first_index"]] <- rle_test[["cumsum"]] - rle_test[["lengths"]] + 1 # In the last line we calculated the first index in the original list for every encoding # In the next line we calculate a column, which gives the maximum # encoding length among all encodings with the value TRUE rle_test[["max"]] <- max(rle_test[rle_test[, "values"] == TRUE, ][,"lengths"]) # Now we just have to subset for maximum length among all TRUE values and return the # according "first index": rle_test[rle_test$lengths == rle_test$max & rle_test$values == TRUE, ]$first_index }`

### 17.3.5 List of functions

**Q**: Implement a summary function that works like`base::summary()`

, but uses a list of functions. Modify the function so it returns a closure, making it possible to use it as a function factory.**Q**: Which of the following commands is equivalent to`with(x, f(z))`

?`x$f(x$z)`

.`f(x$z)`

.`x$f(z)`

.`f(z)`

.- It depends.

### 17.3.6 Mathematical functionals

**Q**: Implement`arg_max()`

. It should take a function and a vector of inputs, and return the elements of the input where the function returns the highest value. For example,`arg_max(-10:5, function(x) x ^ 2)`

should return -10.`arg_max(-5:5, function(x) x ^ 2)`

should return`c(-5, 5)`

. Also implement the matching`arg_min()`

function.**A**:`arg_max()`

:`arg_max <- function(x, f){ x[f(x) == max(f(x))] }`

`arg_min()`

:`arg_min <- function(x, f){ x[f(x) == min(f(x))] }`

**Q**: Challenge: read about the fixed point algorithm. Complete the exercises using R.

### 17.3.7 A family of functions

**Q**: Implement`smaller`

and`larger`

functions that, given two inputs, return either the smaller or the larger value. Implement`na.rm = TRUE`

: what should the identity be? (Hint:`smaller(x, smaller(NA, NA, na.rm = TRUE), na.rm = TRUE)`

must be`x`

, so`smaller(NA, NA, na.rm = TRUE)`

must be bigger than any other value of x.) Use`smaller`

and`larger`

to implement equivalents of`min()`

,`max()`

,`pmin()`

,`pmax()`

, and new functions`row_min()`

and`row_max()`

.**A**: We can do almost everything as shown in the case study in the textbook. First we define the functions`smaller_()`

and`larger_()`

. We use the underscore suffix, to built up non suffixed versions on top, which will include the`na.rm`

parameter. In contrast to the`add()`

example from the book, we change two things at this step. We won’t include errorchecking, since this is done later at the top level and we return`NA_integer_`

if any of the arguments is`NA`

(this is important, if na.rm is set to`FALSE`

and wasn’t needed by the`add()`

example, since`+`

already returns`NA`

in this case.)`smaller_ <- function(x, y){ if(anyNA(c(x, y))){return(NA_integer_)} out <- x if(y < x) {out <- y} out } larger_ <- function(x, y){ if(anyNA(c(x, y))){return(NA_integer_)} out <- x if(y > x) {out <- y} out }`

We can take

`na.rm()`

from the book:`rm_na <- function(x, y, identity) { if (is.na(x) && is.na(y)) { identity } else if (is.na(x)) { y } else { x } }`

To find the identity value, we can apply the same argument as in the textbook, hence our functions are also associative and the following equation should hold:

`3 = smaller(smaller(3, NA), NA) = smaller(3, smaller(NA, NA)) = 3`

So the identidy has to be greater than 3. When we generalize from 3 to any real number this means that the identity has to be greater than any number, which leads us to infinity. Hence identity has to be

`Inf`

for`smaller()`

(and`-Inf`

for`larger()`

), which we implement next:`smaller <- function(x, y, na.rm = FALSE) { stopifnot(length(x) == 1, length(y) == 1, is.numeric(x) | is.logical(x), is.numeric(y) | is.logical(y)) if (na.rm && (is.na(x) || is.na(y))) rm_na(x, y, Inf) else smaller_(x,y) } larger <- function(x, y, na.rm = FALSE) { stopifnot(length(x) == 1, length(y) == 1, is.numeric(x) | is.logical(x), is.numeric(y) | is.logical(y)) if (na.rm && (is.na(x) || is.na(y))) rm_na(x, y, -Inf) else larger_(x,y) }`

Like

`min()`

and`max()`

can act on vectors, we can implement this easyly for our new functions. As shown in the book, we also have to set the`init`

parameter to the identity value.`r_smaller <- function(xs, na.rm = TRUE) { Reduce(function(x, y) smaller(x, y, na.rm = na.rm), xs, init = Inf) } # some tests r_smaller(c(1:3, 4:(-1))) #> [1] -1 r_smaller(NA, na.rm = TRUE) #> [1] Inf r_smaller(numeric()) #> [1] Inf r_larger <- function(xs, na.rm = TRUE) { Reduce(function(x, y) larger(x, y, na.rm = na.rm), xs, init = -Inf) } # some tests r_larger(c(1:3), c(4:1)) #> [1] 3 r_larger(NA, na.rm = TRUE) #> [1] -Inf r_larger(numeric()) #> [1] -Inf`

We can also create vectorised versions as shown in the book. We will just show the

`smaller()`

case to become not too verbose.`v_smaller1 <- function(x, y, na.rm = FALSE){ stopifnot(length(x) == length(y), is.numeric(x) | is.logical(x), is.numeric(y)| is.logical(x)) if (length(x) == 0) return(numeric()) simplify2array( Map(function(x, y) smaller(x, y, na.rm = na.rm), x, y) ) } v_smaller2 <- function(x, y, na.rm = FALSE) { stopifnot(length(x) == length(y), is.numeric(x) | is.logical(x), is.numeric(y)| is.logical(x)) vapply(seq_along(x), function(i) smaller(x[i], y[i], na.rm = na.rm), numeric(1)) } # Both versions give the same results v_smaller1(1:10, c(2,1,4,3,6,5,8,7,10,9)) #> [1] 1 1 3 3 5 5 7 7 9 9 v_smaller2(1:10, c(2,1,4,3,6,5,8,7,10,9)) #> [1] 1 1 3 3 5 5 7 7 9 9 v_smaller1(numeric(), numeric()) #> numeric(0) v_smaller2(numeric(), numeric()) #> numeric(0) v_smaller1(c(1, NA), c(1, NA), na.rm = FALSE) #> [1] 1 NA v_smaller2(c(1, NA), c(1, NA), na.rm = FALSE) #> [1] 1 NA v_smaller1(NA,NA) #> [1] NA v_smaller2(NA,NA) #> [1] NA`

Of course, we are also able to copy paste the rest from the textbook, to solve the last part of the exercise:

`row_min <- function(x, na.rm = FALSE) { apply(x, 1, r_smaller, na.rm = na.rm) } col_min <- function(x, na.rm = FALSE) { apply(x, 2, r_smaller, na.rm = na.rm) } arr_min <- function(x, dim, na.rm = FALSE) { apply(x, dim, r_smaller, na.rm = na.rm) }`

**Q**: Create a table that has*and*,*or*,*add*,*multiply*,*smaller*, and*larger*in the columns and*binary operator*,*reducing variant*,*vectorised variant*, and*array variants*in the rows.Fill in the cells with the names of base R functions that perform each of the roles.

Compare the names and arguments of the existing R functions. How consistent are they? How could you improve them?

Complete the matrix by implementing any missing functions.

**A**In the following table we can see the requested base R functions, that we are aware of:and or add multiply smaller larger binary `&&`

`||`

reducing `all`

`any`

`sum`

`prod`

`min`

`max`

vectorised `&`

`|`

`+`

`*`

`pmin`

`pmax`

array Notice that we were relatively strict about the

*binary*row. Since the*vectorised*and*reducing*versions are more general, then the*binary*versions, we could have used them twice. However, this doesn’t seem to be the intention of this exercise.The last part of this exercise can be solved via copy pasting from the book and the last exercise for the

*binary*row and creating combinations of`apply()`

and the*reducing*versions for the*array*row. We think the array functions just need a dimension and an`rm.na`

argument. We don’t know how we would name them, but sth. like`sum_array(1, na.rm = TRUE)`

could be ok.The second part of the exercise is hard to solve complete. But in our opinion, there are two important parts. The behaviour for special inputs like

`NA`

,`NaN`

,`NULL`

and zero length atomics should be consistent and all versions should have a`rm.na`

argument, for which the functions also behave consistent. In the follwing table, we return the output of``f`(x, 1)`

, where`f`

is the function in the first column and`x`

is the special input in the header (the named functions also have an`rm.na`

argument, which is`FALSE`

by default). The order of the arguments is important, because of lazy evaluation.`NA`

`NaN`

`NULL`

`logical(0)`

`integer(0)`

`&&`

`NA`

`NA`

`error`

`NA`

`NA`

`all`

`NA`

`NA`

`TRUE`

`TRUE`

`TRUE`

`&`

`NA`

`NA`

`error`

`logical(0)`

`logical(0)`

`||`

`TRUE`

`TRUE`

`error`

`TRUE`

`TRUE`

`any`

`TRUE`

`TRUE`

`TRUE`

`TRUE`

`TRUE`

`|`

`TRUE`

`TRUE`

`error`

`logical(0)`

`logical(0)`

`sum`

`NA`

`NaN`

`1`

`1`

`1`

`+`

`NA`

`NaN`

`numeric(0)`

`numeric(0)`

`numeric(0)`

`prod`

`NA`

`NaN`

`1`

`1`

`1`

`*`

`NA`

`NaN`

`numeric(0)`

`numeric(0)`

`numeric(0)`

`min`

`NA`

`NaN`

`1`

`1`

`1`

`pmin`

`NA`

`NaN`

`numeric(0)`

`numeric(0)`

`numeric(0)`

`max`

`NA`

`NaN`

`1`

`1`

`1`

`pmax`

`NA`

`NaN`

`numeric(0)`

`numeric(0)`

`numeric(0)`

We can see, that the vectorised and reduced numerical functions are all consistent. However it is not, that the first three logical functions return

`NA`

for`NA`

and`NaN`

, while the 4th till 6th function all return`TRUE`

. Then`FALSE`

would be more consistent for the first three or the return of`NA`

for all and an extra`na.rm`

argument. In seems relatively hard to find an easy rule for all cases and especially the different behaviour for`NULL`

is relatively confusing. Another good opportunity for sorting the functions would be to differentiate between “numerical” and “logical” operators first and then between binary, reduced and vectorised, like below (we left the last colum, which is redundant, because of coercion, as intended):``f(x,1)``

`NA`

`NaN`

`NULL`

`logical(0)`

`&&`

`NA`

`NA`

error `NA`

`||`

`TRUE`

`TRUE`

error `TRUE`

`all`

`NA`

`NA`

`TRUE`

`TRUE`

`any`

`TRUE`

`TRUE`

`TRUE`

`TRUE`

`&`

`NA`

`NA`

error `logical(0)`

`|`

`TRUE`

`TRUE`

error `logical(0)`

`sum`

`NA`

`NaN`

1 1 `prod`

`NA`

`NaN`

1 1 `min`

`NA`

`NaN`

1 1 `max`

`NA`

`NaN`

1 1 `+`

`NA`

`NaN`

`numeric(0)`

`numeric(0)`

`*`

`NA`

`NaN`

`numeric(0)`

`numeric(0)`

`pmin`

`NA`

`NaN`

`numeric(0)`

`numeric(0)`

`pmax`

`NA`

`NaN`

`numeric(0)`

`numeric(0)`

The other point are the naming conventions. We think they are clear, but it could be useful to provide the missing binary operators and name them for example

`++`

,`**`

,`<>`

,`><`

to be consistent.**Q**: How does`paste()`

fit into this structure? What is the scalar binary function that underlies`paste()`

? What are the`sep`

and`collapse`

arguments to`paste()`

equivalent to? Are there any`paste`

variants that don’t have existing R implementations?**A**`paste()`

behaves like a mix. If you supply only length one arguments, it will behave like a reducing function, i.e. :`paste("a", "b", sep = "") #> [1] "ab" paste("a", "b","", sep = "") #> [1] "ab"`

If you supply at least one element with length greater then one, it behaves like a vectorised function, i.e. :

`paste(1:3) #> [1] "1" "2" "3" paste(1:3, 1:2) #> [1] "1 1" "2 2" "3 1" paste(1:3, 1:2, 1) #> [1] "1 1 1" "2 2 1" "3 1 1"`

We think it should be possible to implement a new

`paste()`

starting from`p_binary <- function(x, y = "") { stopifnot(length(x) == 1, length(y) == 1) paste0(x,y) }`

The

`sep`

argument is equivalent to bind`sep`

on every`...`

input supplied to`paste()`

, but the last and then bind these results together. In relations:`paste(n1, n2, ...,nm , sep = sep) <=> paste0(paste0(n1, sep), paste(n2, n3, ..., nm, sep = sep)) <=> paste0(paste0(n1, sep), paste0(n2, sep), ..., paste0(nn, sep), paste0(nm))`

We can check this for scalar and non scalar input

`# scalar: paste("a", "b", "c", sep = "_") #> [1] "a_b_c" paste0(paste0("a", "_"), paste("b", "c", sep = "_")) #> [1] "a_b_c" paste0(paste0("a", "_"), paste0("b", "_"), paste0("c")) #> [1] "a_b_c" # non scalar paste(1:2, "b", "c", sep = "_") #> [1] "1_b_c" "2_b_c" paste0(paste0(1:2, "_"), paste("b", "c", sep = "_")) #> [1] "1_b_c" "2_b_c" paste0(paste0(1:2, "_"), paste0("b", "_"), paste0("c")) #> [1] "1_b_c" "2_b_c"`

collapse just binds the outputs for non scalar input together with the collapse input. In relations:

`for input A1, ..., An, where Ai = a1i:ami, paste(A1 , A2 , ..., An, collapse = collapse) <=> paste0( paste0(paste( a11, a12, ..., a1n), collapse), paste0(paste( a21, a22, ..., a2n), collapse), ................................................. paste0(paste(am-11, am-12, ..., am-1n), collapse), paste( am1, am2, ..., amn) )`

One can see this easily by intuition from examples:

`paste(1:5, 1:5, 6, sep = "", collapse = "_x_") #> [1] "116_x_226_x_336_x_446_x_556" paste(1,2,3,4, collapse = "_x_") #> [1] "1 2 3 4" paste(1:2,1:2,2:3,3:4, collapse = "_x_") #> [1] "1 1 2 3_x_2 2 3 4"`

We think the only paste version that is not implemented in base R is an array version. At least we are not aware of sth. like

`row_paste`

or`paste_apply`

etc.

## 17.4 Quasiquotation (new)

**Q**: Why does`as.Date.default()`

use`substitute()`

and`deparse()`

? Why does`pairwise.t.test()`

use them? Read the source code.**A**:`as.Date.default()`

uses them to convert unexpected input expressions (neither dates, nor`NAs`

) into a character string and return it within an error message.`pairwise.t.test()`

uses them to convert the names of its datainputs (response vector`x`

and grouping factor`g`

) into character strings to format these further into a part of the desired output.**Q**:`pairwise.t.test()`

assumes that`deparse()`

always returns a length one character vector. Can you construct an input that violates this expectation? What happens?**A**: We can pass an expression to one of`pairwise.t.test()`

’s data input arguments, which exceeds the default cutoff width in`deparse()`

. The expression will be split into a character vector of length greater 1. The deparsed data inputs are directly pasted (read the source code!) with “and” as separator and the result is just used to be displayed in the output. Just the data.name output will change (it will include more than one “and”).`d=1 pairwise.t.test(2, d+d+d+d+d+d+d+d+d+d+d+d+d+d+d+d+d) #> #> Pairwise comparisons using t tests with pooled SD #> #> data: 2 and d + d + d + d + d + d + d + d + d + d + d + d + d + d + d + d + 2 and d #> #> <0 x 0 matrix> #> #> P value adjustment method: holm`